Rendimenti \ Momenti \ 2

Esercizio 1

Il valore atteso dei log-rendimenti del tasso USD/GBP è pari a 2, mentre quello del tasso EUR/GBP è pari a -1/4.

Calcolare quanto segue.

- 1. Il valore atteso dei log-rendimenti del tasso GBP/USD.
- 2. Il valore atteso dei log-rendimenti del tasso USD/EUR.
- 3. Il valore atteso della variabile $-2r_{\frac{GBP}{EUR}} + 3r_{\frac{EUR}{USD}}$

Esercizio 2

La matrice di covarianza dei log-rendimenti sui tassi EUR/GBP e GBP/USD sia la seguente:

$$Cov\begin{bmatrix}r_{\frac{GBP}{GBP},t,h}\\r_{\frac{GBP}{MP},t,h}\\r_{\frac{GBP}{MP},t,h}\end{bmatrix} = \begin{bmatrix}5(h-t) & -2(h-t)\\-2(h-t) & 3(h-t)\end{bmatrix}.$$

Calcolare quanto segue.

- 1. La covarianza tra $-r_{\frac{EUR}{GBP},t,h}$ e $7r_{\frac{GBP}{USD},t,h}$ per h=t+11.
- 2. La correlazione tra $r_{\frac{EUR}{GBP},t,h}$ e $-r_{\frac{GBP}{USD},t,h}$.
- 3. La varianza di $r_{\frac{USD}{EUR},t,h}$.

Esercizio 3

Il portafoglio P è detenuto da un investitore USD e si compone di una posizione lunga su tre asset di tipo A_1 ed una posizione corta su quattro asset di tipo A_2 , ciascuno dei quali genera, rispettivamente, un unico flusso di cassa, secondo le seguenti specifiche: $A_1 = (-20, t+2, GBP)$, $A_2 = (60, t+3, USD)$.

Sono inoltre disponibili i seguenti dati di mercato, validi al tempo t.

	USD	GBP	EUR
USD	1	.53	
GBP			.89
EUR			1

	USD	GBP	EUR
1	0.77	0.88	0.99
2	0.75	0.86	0.97
3	0.73	0.84	0.95
4	0.71	0.82	0.93
5	0.69	0.80	0.91

(Quante unità della divisa in colonna per una unità della divisa in riga)

(Fattori per scontare somme espresse in unità della divisa in colonna e maturanti tanti giorni da *t* quanti riportati in riga)

- 1. Completare la tabella relativa ai dati del mercato FX.
- 2. Calcolare $V_{P,t}$, il valore di P al tempo t nella base currency dell'investitore.

Inoltre, ipotizzando rendimenti semplici normali caratterizzati dai seguenti momenti

i	1	2
$E[R_i]$	2	-1

$$Cov \begin{bmatrix} R_{1,t,h} \\ R_{2,t,h} \end{bmatrix} = \begin{bmatrix} (h-t)/100 & -(h-t)/100 \\ -(h-t)/100 & 2(h-t)/100 \end{bmatrix}$$

Determinare quanto segue.

- 3. Valore atteso e varianza dei rendimenti semplici di *P*.
- 4. La covarianza tra $-8R_1$ e $3R_2$ per h = t + 100.
- 5. La probabilità che il portafoglio renda positivamente per h = t + 85.
- 6. La probabilità di osservare una perdita negativa per t = h 34.
- 7. Calcolare il Valore a Rischio di P al tempo t per $\alpha=0.09$, h=t+1, base currency dell'investitore.

Esercizio 4

Un asset A ha un prezzo al tempo finale h che segue una distribuzione normale di parametri $\mu=3$ e $\sigma^2=5$. Calcolare varianza e valore atteso dei rendimenti semplici di A sull'intervallo [t,h] sapendo che il suo prezzo al tempo t è stato pari a 1/2.

Esercizio 5

Le perdite v tra t e h di un portafoglio P ed una variabile casuale X sono legate dalla seguente relazione: X=-v/6. Calcolare il Valore a Rischio di P per $\alpha=.07$ sapendo che X segue una distribuzione normale di parametri $\mu_X=3$ e $\sigma_X^2=4$.